

TABLE OF CONTENTS

4	THE LINCOLN ELECTRIC COMPANY
6	STAINLEES STEEL SMAW
7	CORROSION
8	TECHNOLOGY FEATURES
10	CUSTOMERS REQUIREMENTS
12	ADVANTAGES AGAINST COMPETITION
14	PRODUCT RANGE
16	PACKAGING OPTIONS
17	RECOMMENDED EQUIPMENT

STRONG GLOBAL BRAND AND MARKET LEADER – 120 YEARS YOUNG, KNOWN WORLDWIDE FOR QUALITY, PERFORMANCE AND PRODUCTIVITY

Visit us @ www.lincolnolootris.ou

LINCOLN ELECTRIC

10 000 employees
160 active in 160 countries
48 manufacturing locations for consumables and equipment
19 manufactured in 19 countries
2.9 billion USD revenue in 2013

THE LINCOLN ELECTRIC COMPANY

Lincoln Electric is a world leader in the design, development and manufacture of arc welding products, robotic arc welding systems, and plasma and oxyfuel cutting equipment, and occupies a leading position on the global brazing and soldering alloys market. The company has a global network of manufacturing, distribution, sales and technical support centers in more than 160 countries. Lincoln Electric was founded by John C. Lincoln in 1895, and is headquartered in Cleveland, Ohio, USA.

INNOVATION

With a long history of innovation in arc welding equipment and consumables, Lincoln Electric has been providing cutting-edge products and comprehensive and welding solutions for nearly 120 years. We operate the industry's most comprehensive research and product development program, supported by our R&D centers around the world.

CUSTOMER COMMITMENT AND SUPPORT

High quality products and great customer service are important aspects of the Lincoln Electric story, but it's our unmatched welding expertise that truly sets us apart. If there's a better way for you to weld, we'll help you find it. If automation can improve your bottom line, we'll guide you through the decision-making process. If there's a method that can help you reduce costs, we'll show you how – and why.

STAINLESS STEEL SMAW

The basic advantage of stainless steel is that it can be applied in a corrosive environment due to the formation of a thin protective layer of Chromium oxide that is formed on the surface of steels containing more than 12% Cr. The main application of stainless steels is to withstand aqueous corrosive solutions. Furthermore, specific stainless steels have been developed to withstand high temperatures (oxidation), high stresses at high temperatures (creep) and extreme low temperatures (cryogenic applications).

STAINLESS STEEL BXXX ASIRANGE Cr Ni Mo 17-18% 8-13% 0-5% The most common stainless steels contain 17 \div 18% Cr, 8 \div 13% Ni, 0 \div 5% Mo (3XX AISI range). These materials have an austenitic structure that makes the material tough and ductile. They are considered to have good weldability.

The basic austenitic stainless steel is AISI 304L (EN 10088-1 X2CrNi 19-11, Material Nr. 1.4306). This material gives protection to general corrosion. When chlorine ions are present in the corrosive environment, AISI 304L is not resistant to the special type of corrosion that occurs: pitting. AISI 316L (EN 10088-1 X2CrNiMo 17-12-2, M.Nr. 1.4404), which contains 2 ÷ 2.5% of molybdenum, is more resistant to this type of corrosion. Based on these two grades, a whole range of different compositions has been developed with specific properties.

Besides the austenitic 3XX stainless steels, there are ferritic, martensitic, ferritic-austenitic (duplex) and fully austenitic stainless steels which all have their own specific advantages. Lincoln Electric Europe has outstanding consumables for each of these special stainless steel ranges and for nickel base alloys. Although they are not further discussed in this document, your local Lincoln Electric representative or distributor can provide you with more information or transfer your questions to the product specialists of Lincoln Electric Europe.

ADVANTAGES AGAINST COMPETITION

CORROSION

CUSTOMERS

REQUIREMENTS

The type of corrosion that may occur depends on the composition of the applied steel grade, the corrosive medium and process temperature. Whether a metal (base material or weld metal) can withstand corrosion is in principle determined by its chemical composition. However, imperfections in the construction (crevices, local oxidation or remaining slag due to welding) can affect the corrosion properties of a material.

Uniform decrease of material thickness.

RECOMMENDED

EQUIPMENT

Pitting corrosion

General corrosion

The material shows small (local) pits, that may deepen rapidly. Locally the protective passive oxide layer of the material has disappeared.

Crevice corrosion

This form of corrosion occurs in crevices: locations where no oxygen can penetrate in the liquid. There is no oxygen to form the passive protective layer, thus giving corrosion.

Contact or galvanic corrosion

When a "noble" material is combined with a "less-noble" material in a conductive liquid, the "less-noble" material will corrode. Prevent small "less-noble" parts in a large "noble" construction.

500°C 800°C 500°C

Stress corrosion

Stresses combined with e.g. hot solutions containing chlorine or sulphide ions can cause stress corrosion cracking. Ferritic-austenitic (duplex) stainless steels are used for this application.

Intercrystalline corrosion

3XX with more than 0.03% C may suffer from the formation of chromium carbides and hence Cr depletion in the HAZ, giving intercrystalline corrosion. 3XXL or Nb/Ti-stabilised types prevent this phenomenon.

CORROSION

TECHNOLOGY FEATURES

TECHNOLOGY FEATURES

Porosity, caused by coating moisture is no longer an issue: Lincoln Electric Europe has eliminated this problem by developing a coating that limits moisture absorption.

This prevents porosity in general, but also the well-known starting porosity. Welders no longer have to overcome starting porosity by short-circuiting the electrode; this had the risk of loosing a part of the electrode coating when breaking the short circuit.

ECONOMY

The most economic welds are achieved by:

- Welders that appreciate the electrode they use. (They will show a higher productivity).
- Long electrodes (350/450 mm) with short stub ends: reduce the amount you throw away, and increase the duty cycle.
- High quality products with balanced chemical analysis and microstructure.

PROTECTION AGAINST

RISK OF POROSITY

Relative humidity

Moisture absorption of the coating at 25°C of ordinary rutile covered stainless steel electrodes and of Lincoln Electric rutile covered stainless steel electrodes.

Moisture content of electrode coating

MOISTURE

CUSTOMERS REQUIREMENTS

The success of a stainless steel covered electrode is determined by the appreciation of both welders and welding engineers/management. Both groups have different requirements: welders want a user friendly electrode that does the job; welding engineers and the management want an economic solution for the quality requirements they have to fulfil.

The most important requirements are:

- Electrode easy to bend slightly, without cracking of the coating
- Easy striking, no sticking electrodes / extinguishing arc
- Stable arc that is easy to direct
- No spatter
- Good side wall wetting, no undercut
- Good slag detachability, no shooting slag
- Pore free weld metal

Lincoln Electric stainless steel electrodes have been designed to meet all requirements of both the welders and the welding engineers/management. Of course, both ranges have specific features that make them the optimum choice for different applications.

NO SPATTER

For more specific applications the Jungo[®] range (basic electrodes, for high restraint welds or when excellent low temperature notch toughness properties are required) and the Vertarosta[®] range (for vertical down welding) have been specially designed to provide optimum performance. The table below provides the basic information which of the Lincoln Electric Europe stainless steel electrode ranges give optimum results in which general application:

Application	Electrode/weld metal characteristics	Preferred electrode range
Downhand fillets and filling of joints	Good bead shape / slag release	Linox®
All position welding	Good side wall wetting / arc stability	Linox [®] P
Downhand fillets and filling of joints	Excellent bead shape / slag release	Limarosta®
All position welding	Excellent side wall wetting / arc stability	Arosta®
High restraint welding conditions	Excellent low temperature toughness properties	Jungo®
Vertical down welding	Fillet welds and open roots	Vertarosta®

Apart from electrodes for generic applications, Lincoln Electric Europe has developed special electrodes for special steel compositions such as:

- Duplex / super duplex stainless steels
- Supermartensitic stainless steels
- Fully austenitic stainless steels.
- Nickel base alloys

ADVANTAGES AGAINST COMPETITION

BENDING TEST No coating breaking or crumbling after bending: the guarantee of guality welds

SLAG REMOVAL Slag easily detachable and smooth bead appearance

TRANSFORMER MACHINE Stable welding performance even for very low ampere values and transformer welding machines

ARC STRIKING Very stable and directed arc

TACK WELDING Ease of use especially for tack welding with its simplified striking property

Advantage of welding with low current provides capability of easy welding of very thin materials

POSITIONAL WELDING Superior weldability in positional welding

STANDARD-16 STAINLESS STEEL ELECTRODES*

STANDARD-17 STAINLESS STEEL ELECTRODES*

Lincoln Electric advantage in positional welding with arc stability and weld bead appearance

RECOMMENDED

EQUIPMENT

Lincoln Electric offers best Standard Stainless Steel Electrodes for down-hand welding

*AVERAGE PERFORMANCE including arc stability, weld bead appearance, slag detachability, undercut, ease of strike/restrike

Stable arc and regular welds in PF(up) / 5G Up position

STAINLESS STEEL

1. 1.

22

TECHNOLOGY FEATURES

1840

			EN ISO (ISO 3581-A)	CUR- RENT TYPE	CHEMISTRY								TYPICAL FERRITE			
PRODUCT NAME	COATING TYPE	AWS (A5.4)			С	Mn	Si	Cr	Ni	Мо	Nb	Cu	N	WRC -92	RP0.2	RM
Arosta® 304L	Rutile-Basic	E308L-16	E 19 9 L R 1 2	AC/DC +/-	0.02	0.80	0.80	19.5	9.7	-	-	-	-	4-10	440	580
Limarosta® 304L	Rutile-Basic	E308L-17	E 19 9 L R 1 2	AC/DC +/-	0.025	0.75	0.95	19.0	9.7	-	-	-	-	4-10	440	600
Vertarosta® 304L	Rutile-Basic	E308L-15	E 19 9 L R 2 1	DC +	0.02	0.8	0.7	20.0	9.8	-	-	-	-	4-10	440	600
Jungo® 304L	Basic	E308L-15	E 19 9 L B 2 2	DC +	0.025	1.8	0.4	19.0	10.0	-	-	-	-	4-10	400	600
Arosta® 347	Rutile-Basic	E347-16	E 19 9 Nb R 1 2	AC/DC +/-	0.03	0.8	0.8	19.5	9.8	-	0.35	-	-	6-12	500	630
Jungo® 347	Basic	E347-15	E 19 9 Nb B 2 2	DC +	0.02	1.6	0.5	20.0	10.0	-	0.40	-	-	6-12	500	630
Arosta® 316L	Rutile-Basic	E316L-16	E 19 12 3 L R 1 2	AC/DC +/-	0.02	0.8	0.8	18.0	11.5	2.85	-	-	-	4-10	450	580
Limarosta® 316L	Rutile-Basic	E316L-17	E 19 12 3 L R 1 2	AC/DC +/-	0.02	0.8	1.0	18.0	11.5	2.8	-	-	-	4-10	450	580
Vertarosta® 316L	Rutile-Basic	E316L-15	E 19 12 3 L R 2 1	AC/DC +	0.02	0.7	0.85	18.0	11.5	2.8	-	-	-	4-10	500	620
Jungo® 316L	Basic	E316L-15	E 19 12 3 L B 2 2	DC +	0.025	1.6	0.4	18.5	11.0	2.7	-	-	-	4-10	450	650
Limarosta® 316L-130	Rutile-Basic	E316L-17	E 19 12 3 L R 5 3	AC/DC +	0.02	0.65	1.0	18.0	11.5	2.8	-	-	-	4-10	450	580
Arosta® 318	Rutile-Basic	E318-16	E 19 12 3 Nb R 1 2	AC/DC +/-	0.03	0.8	0.85	18.0	11.5	2.7	0.35	-	-	6-12	500	630
Jungo® 4465	Basic	E310Mo-15*	E 25 22 2 N L B 2 2*	DC +	0.03	4.5	0.4	25.0	22.0	2.2	-	-	0.13	0	400	620
Jungo [®] 4500	Basic	E385-16*	E 20 25 5 Cu N L R 1 2	DC +	0.02	1.2	0.9	20.0	25.0	5.0	-	1.5	-	0	410	620
Arosta® 4462	Rutile-Basic	E2209-16*	E 22 9 3 N L R 3 2	AC/DC + /-	0.02	0.8	1.0	22.5	9.5	3.2	-	-	0.16	30-55	650	800
Jungo [®] 4462	Basic	E2209-15	E 22 9 3 N L B 2 2	DC +	0.025	1.6	0.5	23.5	9.0	3.0	-	-	0.15	30-60	650	800
Jungo® 309L	Basic	E309L-15	E 23 12 L B 2 2	AC/DC +	0.025	1.5	0.4	23.0	13.0	-	-	-	-	10-20	470	570
Arosta® 309S	Rutile-Basic	E309L-16	E 23 12 L R 3 2	AC/DC +	0.02	0.8	0.8	23.5	12.5	-	-	-	-	12-20	480	560
Limarosta® 309S	Rutile-Basic	E309L-17	E 23 12 L R 3 2	AC/DC +	0.02	0.8	1.0	23.0	12.5	-	-	-	-	10-20	480	560
Arosta® 309Mo	Rutile-Basic	E309LMo-16	E 23 12 2 L R 3 2	AC/DC +	0.02	0.8	0.8	23.0	12.5	2.7	-	-	-	15-25	580	700
Nichroma	Rutile-Basic	E308LMo-16	E 20 10 3 R 3 2	AC/DC +	0.025	0.8	1.0	20.0	9.5	2.3	-	-	-	20	500	720
Nichroma 160	Rutile-Basic	E309Mo-26	E 23 12 2 LR 53*	AC/DC +	0.05	0.7	1.0	23.7	12.8	2.4	-	-	-	15	550	740
Limarosta® 312*	Rutile-Basic	E312-17	E 29 9 R 1 2	AC/DC +	0.11	0.9	1.0	29.0	9.0	-	-	-	-	-	700	800
Arosta® 307	Rutile-Basic	E307-16*	E 18 8 Mn R 1 2	AC/DC +	0.09	5.0	0.6	18.5	8.5	-	-	-	-	0	450	650
Arosta® 307-160	Rutile	E307-26*	E 18 8 Mn R 5 3	AC/DC +	0.06	6.0	1.0	18.0	8.0	-	-	-	-	-	425	650
Jungo® 307	Basic	E307-15*	E 18 8 Mn B 2 2	AC/DC +	0.08	5.5	0.3	19.0	8.5	-	-	-	-	-	500	650
Arosta® 304H	Rutile-Basic	E308H-16	E 19 9 H R 1 2	AC/DC +/-	0.05	0.75	0.85	18.5	9.5	-	-	-	-	3-7	450	600
Arosta® 309H	Rutile-Basic	E309H-16*	E 23 12 R 3 2*	AC/DC +/-	0.10	0.8	1.6	22.0	11.0	-	-	-	-	3-8	500	700
Intherma® 310	Basic	E310-16	E 25 20 R 1 2	AC/DC +	0.12	2.5	0.5	26.0	20.5	-	-	-	-	0	440	600
Intherma® 310B	Basic	E310-15*	E 25 20 B 1 2	DC +	0.1	3.0	0.3	25.0	21.0	-	-	-	-	0	440	600
Linox® P308L	Rutile-Basic	E308L-16	E 19 9 L R 32	AC/DC +	0.8	0.6	19.0	9.5	-	-	-	-		3-10	450	590
Linox® 308L	Rutile-Basic	E308L-17	E 19 9 L R 3 2	AC/DC +	0.8	0.8	19.0	9.5	-	-	-	-		3-10	450	590
Linox® P 316L	Rutile-Basic	E316L-16	E 19 12 3 L R 3 2	AC/DC +	0.8	0.6	19.0	12.0	2.5	-	-	-	-	3-10	480	580
Linox [®] 316L	Rutile-Basic	E316L-17	E 19 12 3 L R 3 2	AC/DC +	0.8	0.8	18.0	12.0	2.5	-	-	-	-	3-10	480	600
Linox® P 309L	Rutile-Basic	E309L-16	E 23 12 L R 3 2	AC/DC +	0.8	0.6	23.5	13.0	-	-	-	-		8-20	495	595
Linox® 309L	Rutile-Basic	E309L-17	E 23 12 L R 3 2	AC/DC +	0.7	0.7	24.0	12.5	-	-	-	-		8-20	500	620

386 × 76

Starte and

TELASSOR PERMIT

194 64

Paksa tet

RECOMMENDED EQUIPMENT

is Long that

		PACKAGING TYPE						
ELONGA- TION [%] APPROVA IMPACT TOUGNESS	ALS APPLICATION DESCRIPTION	CARTON	CAN	PRO- TECH	SRP			
43 60 J @-20°C BV, TÜV, DB	General Purpose - all position stainless steel electrode for 304L or equivalent steels				•			
45 60 J @-20°C DNV/GL, LR, RI	MRS, General Purpose - all position stainless steel electrode for 304L or equivalent steels	•	•		•			
40 40 J @ -120°C TÜV, DB	Vertical down stainless steel electrode for 304L or equivalent steels	•						
40 40 J @ -196°C TÜV	Basic coated electrode for low temperature applications (304L) with good impact properties down to -196 $^{\circ}\mathrm{C}$	•						
35 35 J @ -60°C TÜV, DB	Niobium stabilized stainless steel electrodes used for the welding of types 347 and 321 stainless and stainless clad steels	•						
35 40 J @ -120°C TÜV	Niobium stabilized stainless steel electrodes used for the welding of types 347 and 321 stainless and stainless clad steels	•						
39 40 J @ -120°C ABS, BV, DNV/0 RINA, RMRS, T	sL, LR, UV, DB General Purpose - all position stainless steel electrode for 316L or equivalent steels	•	•		٠			
40 40 J @ -105°C DNWGL, LR, RI	MRS, General Purpose - all position stainless steel electrode for 316L or equivalent steels	•	•		•			
35 35 J @ -60°C ABS, BV, DNV/0	L, Vertical down stainless steel electrode for 316L or equivalent steels	•						
35 35 J @ -196°C BV	Basic coated electrode for low temperature applications (316L) with good impact properties down to -196° C	•						
40 40 J @ -105°C	High recovery (%130) all position stainless steel electrode for 316L or equivalent steels				•			
38 35 J @ -60°C TÜV	Rutile basic all position stainless steel electrodes for welding Ti or Nb stabilized 316 or equivalent steels	•						
35 50 J @ -196°C TÜV	Basic high CrNiMo-alloyed fully austenitic all position electrode with excellent corrosion resistance in strong oxydizing and slightly reducing media	•						
40 50 J @ -60°C TÜV	Designed for welding alloy 904L for applications in phosphoric acid and sulphuric acid and paper mill equipment	•						
27 40 J @ -40°C BV, DNV/GL, RI	Rutile-basic electrode for duplex stainless steel welding with high resistance to general				•			
28 45 J @ -50°C DNV/GL	Basic electrode for duplex stainless steel welding with high resistance to general corrosion, nitting and stress corrosion (PRFN>5)	•			•			
40 40 J @ -196°C	Basic high CrNi alloyed buffer electrode for welding stainless steel to mild steel and root nasses in clad steel	•						
40 40 J @ -120°C ABS, BV, RMRS	, TÜV root nasses in clad steel	•			•			
40 50 J @ -50°C DNWGL, LR, RI	MRS, Rutile-basic high CrNi alloyed buffer electrode for welding stainless steel to mild steel and root nasses in clad steel	•	•		•			
30 45 J @ -60°C ABS, BV, DNV/0 RINA, RMRS, T	L, LR, High CrNiMo alloyed all position rutile-basic electrode specially developed for welding	•			•			
30 60 J @-20°C BV, DNV/GL, Ti	JV, DB General purpose electrode for repair welding as well as welding dissimilar joints	•						
28 45 J @-20°C ABS, BV, DNV/0 RINA, RMRS	5L, High recovery (160%) electrode for welding carbon steel to stainless steel in the down hand position in shinbuilding	•						
20 50 J @-20°C DB	High CrNi-alloyed all position electrode for repair welding. Especially developed for steels difficult to weld, such as armour plates, austenitic Mn-steels and high C-steels.	•			•			
35 75 J @ -60°C TÜV, DB	Rutile- basic all position 5% Mn-alloyed stainless steel electrode, especially developed for steels difficult to weld, such as armour plates, austenitic Mn-steels and high C-steels	•						
35 60 J @-10°C	Rutile 6%Mn-alloyed stainless steel electrode, especially developed for steels difficult to weld, such as armour plates, austenitic Mn-steels and high C-steels	•						
35 35 J @ -120°C	Fully basic all position 5% Mn-alloyed stainless steel electrode, especially developed for steels difficult to weld, such as armour plates, austenitic Mn-steels and high C-steels	•			•			
44 50 J @-20°C	Specially developed for high temperature applications (up to 730°C) - e.g. AISI 304H or Mat. Nr 1,4948	•						
30 50 J @ +20°C	Specially developed for high temperature applications like industrial furnaces (ovens). High resistance to oxidation up to 1050°C	•						
30 80 J @ +20°C	Rutile-basic electrode with fully austenitic weld metal which has high Cr and Ni content for very high service temperature. High resistance against oxidation and scaling up to 1200°C	•						
30 100 J @ +20°C	Basic electrode with fully austenitic weld metal which has high Cr and Ni content for very high service temperature. High resistance against oxidation and scaling up to 1200°C	•						
45 35 J @ -100°C ABS, TÜV	General Purpose - all position stainless steel electrode for 304L or equivalent steels	•		•				
45 50 J @-20°C ABS, TÜV	General Purpose - all position stainless steel electrode for 304L or equivalent steels	•		•				
41 40 J @ -105°C ABS, TÜV	General Purpose - all position stainless steel electrode for 316L or equivalent steels	•		•				
42 40 J @ -105°C ABS, TÜV	General Purpose - all position stainless steel electrode for 316L or equivalent steels	•		•				
41 40 J @-20°C ABS, TÜV	Rutile-basic high CrNi alloyed buffer electrode for welding stainless steel to mild steel and root passes in clad steel	•		•				
40 40 J @-20°C ABS, TÜV	Rutile-basic high CrNi alloyed buffer electrode for welding stainless steel to mild steel and root passes in clad steel	•		•				

STAINLESS STEEL

CORROSION

TECHNOLOGY FEATURES

500D

BETTER

PACKAGING OPTIONS

The packaging selection is based on concrete technical aspects and customer requirements. Required product performance, product behavior and welding specification requirements are some parameters which can lead to a selection of real protective technical packaging solutions:

PACKAGING OPTIONS

CARTON BOX

Universal package for stick electrodes

LINC CAN

Robustnessagainstmechanicaldamage

PROTECH

- Price competitive vacuum packaging
- Aruggedmulti-layerAl-PEfoilisusedas barrier against moisture absorption
- A carton inner box provides extra protection to the foil during transportation and storage

SRP

- The most puncture resistant vacuum packaging in the welding Industry
- Ensures extreme slow moisture pick-up
- Vacuum sealed packaging with high leak resistance
- Small packaging, minimal waste of electrodes

LINC-PACK

 For customers only needing a limited number of stainless steel electrodes!

CUSTOMERS REQUIREMENTS

ADVANTAGES AGAINST

Adding the state

PRODUCT RANGE

PACKAGING OPTIONS

RECOMMENDED

RECOMMENDED EQUIPMENT

Lincoln Electric offers a complete range of welding equipment: both inverters and conventional rectifiers.

Inverters use modern light weight technology; this allows for portable machines with excellent welding characteristics.

Within the range, the maximum output current varies from approx. 120A (135-S) to 400A (400-SX).

The range is completed with the conventional rectifiers LINC 405-S/SA and LINC 635-S/SA with respectively 400A and 670A output.

KEY: • Excellent O Good A Possible

www.lincolnelectric.eu

CUSTOMER ASSISTANCE POLICY

CUSTONER ASSISTANCE PDLICY The business of The Lincoln Electric Company[®] is manufacturing and selling high quality welding equipment, consumables, and cutting equipment. Our challenge is to meet the needs of our customers and to exceed their expectations. On occasion, purchasers may ask Lincoln Electric for information or advice about their use of our products. Our employees networks the best of their ability based on information provided to them by the customers and the knowledge they may have concerning the application. Our employees, however, are not in a position to verify the information provided to the veluate the engineering requirements for the particular weldment. Accordingly, Lincoln Electric does not variant or guarantee or assume any liability with respect to such information or advice. Moreover, the provision of such information or advice does not create, expand, or alter any warranty on our products. Any express or implied warranty that might arise from the information or advice, including any implied warranty of merchantability or any warranty of fitness for any customers' particular purpose is specifically disclaimed.

Lincoln Electric is a responsive manufacturer, but the selection and use of specific products sold by Lincoln Electric is solely within the control of, and remains the sole responsibility of the customer. Many variables beyond the control of Lincoln Electric affect the results obtained in applying these types of fabrication methods and service requirements.

Subject to Change – This information is accurate to the best of our knowledge at the time of printing. Please refer to www.lincolnelectric.com for any updated information.